A Hybrid Approach to Extract Temporal Signals from Narratives
نویسندگان
چکیده
When processing literary narratives, standard temporal annotation specifications – typically developed for processing newsstyle documents – do not match the expectations of literary scholars. Thus, a different definition of temporal signals is required. In this paper, we define this concept from the narratological perspective and present our hybrid approach developed in the context of the heureCLÉA1 project to extract temporal signals. Our evaluation demonstrates high quality extraction results, making the approach directly applicable to the literary domain.
منابع مشابه
EMG-based wrist gesture recognition using a convolutional neural network
Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...
متن کاملIranian TEFL Graduates’ Conceptions of Measurement Error in Research: A Genealogical Narrative Inquiry
The aim of this study is to investigate Iranian TEFL graduates’ conception of measurement error in research. Adopting a sequential explanatory multi-method strategy (Borg, 2009), the researchers analyzed causal and temporal relations in the research narratives elicited from 30 TEFL graduates. Gee’s (1986) framework for identifying narrative discourse units (lines, stanzas, and episodes) was ado...
متن کاملContext-aware Modeling for Spatio-temporal Data Transmitted from a Wireless Body Sensor Network
Context-aware systems must be interoperable and work across different platforms at any time and in any place. Context data collected from wireless body area networks (WBAN) may be heterogeneous and imperfect, which makes their design and implementation difficult. In this research, we introduce a model which takes the dynamic nature of a context-aware system into consideration. This model is con...
متن کاملA hybrid EEG-based emotion recognition approach using Wavelet Convolutional Neural Networks (WCNN) and support vector machine
Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wave...
متن کاملOptimized Seizure Detection Algorithm: A Fast Approach for Onset of Epileptic in EEG Signals Using GT Discriminant Analysis and K-NN Classifier
Background: Epilepsy is a severe disorder of the central nervous system that predisposes the person to recurrent seizures. Fifty million people worldwide suffer from epilepsy; after Alzheimer’s and stroke, it is the third widespread nervous disorder.Objective: In this paper, an algorithm to detect the onset of epileptic seizures based on the analysis of brain electrical signals (EEG) has b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015